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ON RIEMANN SOLVERS FOR COMPRESSIBLE LIQUIDS
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SUMMARY

A number of Riemann solvers are proposed for the solution of the Riemann problem in a compressible
liquid. Both the Tait and Tammann equations of state are used to describe the liquid. Along with exact
Riemann solvers, a detailed description of a primitive variable Riemann solver, a two-shock Riemann
solver, a two-rarefaction Riemann solver and an extension to the HLL Riemann solver, namely the
HLLC Riemann solver, are presented. It is shown how these Riemann solvers may be implemented into
Godunov-type numerical methods. The appropriateness of each of the Riemann solvers for a number of
flow situations is demonstrated by applying Godunov’s method to some revealing shock tube test
problems. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: compressible liquid; Riemann solvers; approximate Riemann solvers; Tammann equation of state; Tait
equation of state

1. INTRODUCTION

The study of compressible gas dynamics has been far more extensive than that for compress-
ible hydrodynamics. This paper provides methods for solving the equations of hydrodynamics
using some ideas developed in the study of gas dynamics. In the main, the desire to solve the
Riemann problem for a liquid is to use the solution as part of a Godunov-type numerical
scheme for solving general multidimensional initial boundary value problems for shock wave
propagation in liquids. However, the solution to the Riemann problem in a liquid also leads
to a better understanding of its properties. As the exact Riemann solution is often too time
consuming to use effectively as part of a numerical scheme, a number of approximate Riemann
solvers are also presented. These Riemann solvers lead directly, without need for iteration, to
an approximate solution for the Riemann problem. The hydrodynamic equations are taken to
be the inviscid, compressible Euler equations describing the conservation of mass, momentum
and total energy.

To describe a liquid, a suitable equation of state is required; here the Tait [1] and Tammann
[2] equations of state, which are applicable to a wide range of liquids, shall be used. The Tait
equation appears to be the more widely used of the two (e.g [3,4]), and it is used to describe
the homentropic flow of a liquid, i.e. entropy is the same for all fluid particles. In fact, the
modified Tait equation of state proposed by Kirkwood [5], which bears little resemblance to
the original Tait equation of state, derived from measurements of seawater [6] will be used. The
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modified Tait equation of state is an excellent representation of the equation of state for a
number of liquids under a wide range of temperatures and pressures [7], e.g. it is suitable as
an equation of state for water up to 25000 atmospheres. The Tammann equation of state is
suitable for describing liquids at high pressures [2,8] and if the flow is isentropic, the Tammann
equation of state appears to be in good agreement with the Tait equation of state [9,10].
However, the Tammann equation of state is more suitable for flows undergoing non-isentropic
processes, such as shock waves. A review of other equations of state for water can be found
in Reference [10]. Examples of areas where the study of compressible liquids may be of interest
include underwater explosions [4], oil flow in shock absorbers [3] and extracorporeal shock
wave lithotripsy (ESWL) used for the removal of kidney stones where the acoustic properties
of tissue are very similar to those for water. The numerical solution of compressible
hydrodynamic problems has not received a large amount of attention. However, an exact
Riemann solver employing the Tait equation of state has been used by both Flores and Holt
[4] and by Sugimura et al. [8]. This Riemann solver will prove satisfactory for one-dimensional
problems, but it is not fast enough to be used effectively in more complex multidimensional
problems. Finite difference approaches that have been used to solve problems of this kind
include that by Cooke and Chen [11], who used Roe’s method with both the Tait equation of
state and a general equation of state to provide the solution to some one-dimensional test
problems. Koren et al. [3] uses an Osher type scheme to solve an oil flow problem in which a
linearised version of the Tait equation of state is used to describe the oil. The present Riemann
solvers provide a firm base upon which numerical schemes can be built, with the aim of solving
complex multidimensional initial boundary value problems.

The rest of this paper is set out as follows; Section 2 introduces the governing equations for
the fluid dynamics of a compressible liquid and its equation of state. In Section 3, two exact
Riemann solvers using the Tammann and Tait equations of state, respectively, are presented.
Four approximate Riemann solvers are presented in Section 4. Finally, a number of test
problems are presented in Section 5 to assess the performance of the Riemann solvers and
some conclusions can be found in Section 6.

2. THE RIEMANN PROBLEM

Here two equations of state for a liquid shall be considered, namely the Tammann and
(modified) Tait equations of state. The Tammann equation of state can be written as

p=p(r, e)= (g−1)re−gpc, (1)

where p, r and e are the pressure, density and specific internal energy, respectively. The values
for the pressure constant, pc, and polytropic constant, g, are liquid-dependent, and a number
of these values corresponding to a number of different liquids can be found in Reference [12].
Note that if 1BgB2 and pc=0, the Tammann equation of state reduces to the ideal gas
equation of state; this is a very useful property of this equation of state. The sound speed
associated with this equation of state is given by

a2=
g

r
(p+pc). (2)

The Tait equation of state can be written as
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p=p(r)=B
��r

r0

�n

−1
n

, (3)

where B is a pressure constant that is in fact a weak function of entropy but is usually treated
as a constant. The density of the liquid at atmospheric pressure is denoted by r0, and n is a
constant playing a similar role to the ratio of specific heats for an ideal gas. Different values
for these constants corresponding to a number of different liquids can be found in Reference
[1]. The corresponding sound speed for the Tait equation of state is given by

a2=
n
r

(p+B). (4)

The Riemann problem is the initial value problem for a hyperbolic system of conservations
laws,

Ut+F(U)x=0, (5)

with initial conditions consisting simply of two constant states separated by a discontinuity

U0(x)=
!UL

UR

xB0
x\0.

(6)

Computationally, interest is in two- and three-dimensional problems. From a numerical point
of view, it is sufficient to consider the Riemann problem in the direction normal to the
interface of a computing cell. Provisionally assuming Cartesian co-ordinates, it suffices to
consider the Riemann problem in the x-direction. Here, the two-dimensional x-split Euler
equations are studied, in which case the set of conserved variables, U, and the corresponding
fluxes, F(U), are

U=Ã
Ã

Ã

Á

Ä

r

ru
r6

E

Ã
Ã

Ã

Â

Å

, F(U)=Ã
Ã

Ã

Á

Ä

ru
ru2+p

ru6
u(E+p)

Ã
Ã

Ã

Â

Å

, (7)

where u is the particle velocity in the x-direction, 6 is the tangential particle velocity and E is
the total energy per unit volume, E=r(e+1

2(u
2+62)). However, in the case for the Tait

equation of state, the pressure is a function of density, only in which case, the internal energy
can be written as e=e (1)(r)+e (2)(S) [13], where S is the entropy. This in turn allows the
elimination of the energy equation from (7) and thus the (isentropic) Euler equations become

Ã
Á

Ä

r

ru
r6

Ã
Â

Åt

+Ã
Á

Ä

ru
ru2+krn

ru6
Ã
Â

Åx

=0, (8)

where k=B/r0
n. As one would expect, this simplification influences the solution to the

Riemann problem.
The solution to the Riemann problem is a similarity solution in that it is a function of x/t

only. The solution to the Riemann problem using the Tammann equation of state (see Figure
1) consists of two non-linear waves which are either shocks or rarefactions. The middle wave
in Figure 1 is actually a contact wave and a shear wave travelling at the same speed, this
corresponds to the repeated eigenvalue of the Jacobian of F(U). The solution to the Riemann
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Figure 1. Wave diagram showing the structure of a typical solution to the x-split two-dimensional Riemann problem
using the Tammann equation of state.

problem using the Tait equation of state consists of two non-linear waves and a shear wave,
see Figure 2. In both cases, the region between the two non-linear waves is called the star
region, the pressure p� and particle velocity u� are constant in this region. The tangential
velocity component, 6, is discontinuous across the shear wave and in the Tammann equation
of state case, the density varies discontinuously from rL* to rR* across the contact wave. For
a general background in Riemann solvers see Reference [14].

3. TWO EXACT RIEMANN SOLVERS

The exact solution to the Riemann problem is obtained by constructing a function f(q),
relating the two data states to a q variable in the star region, and then solving the single
non-linear algebraic equation f(q)=0. This equation is solved by a Newton–Raphson
iteration, the remaining star state variables then follow directly along with the wave speeds. As
the solution method for each equation of state differs, the details for each will be presented in
turn.

Figure 2. Wave diagram showing the structure of a typical solution to the x-split two-dimensional Riemann problem
using the Tait equation of state.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 395–418 (1998)
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3.1. An exact Riemann sol6er using the Tammann equation of state

The exact solution to the Riemann problem is obtained by solving a single non-linear
algebraic equation for p*,

f(p�)=0. (9)

To relate p* to the left and right data states using relationships across the left and right
(non-linear) waves, Equation (9) is written as

f(p�)
 fL(UL, p�)+ fR(UR, p�)+Du=0, (10)

where Du=uR−uL. Since the non-linear waves are either shock waves or rarefaction waves
there are two possible formulations for fK (K=L or R).

3.1.1. Shock wa6e relations. In order to derive a relationship across the shock wave, the
Rankine–Hugoniot conditions are required; these can be written as

rKwK=rK* w�, (11)

rKwK
2 +pK=rK* w�

2 +p�, (12)

1
2

wK
2 +hK=

1
2

w�
2 +hK* , (13)

where K=L or R, the specific enthalpy h=e+ (p/r) and w is the particle velocity in a frame
of reference moving with the shock,

wK=uK−SK, w�=u�−SK; (14)

SK is the shock speed. Now the mass fluxes are defined

QL=rLwL=rK* w�, (15)

and

QR= −rRwR= −rR* w�. (16)

Substitution into Equation (12) gives

QL=
p�−pL

wL−w�



p̄�− p̄L

uL−u�
, (17)

and

QR=
p�−pR

wR−w�

−

p̄�− p̄R

uR−u�
, (18)

where p̄=p+pc, which is rearranged to define fL and fR

u�=uL− fL, u�=uR+ fR. (19)

where the functions fL, fR are

fL=
p̄�− p̄L

QL

, fR=
p̄�− p̄R

QR

. (20)

Eliminating w from Equations (15)–(18),one can solve for QK to give
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QK=
�

rKrK*
� p̄�− p̄K

rK* −rK

�n1/2

. (21)

The Tammann equation of state in terms of the specific enthalpy, h, can be written as

h=
� g

g−1
� p+pc

r
. (22)

Eliminating wK and w� from Equation (13) using Equations (11) and (12), the following is
obtained

hK* −hK=
1
2
� 1

rK

+
1

rK*
�

(p̄�− p̄K), (23)

then substituting (22) into (23) gives the density–pressure relation

rK* =rKÃ
Ã

Ã

Æ

È

p̄�
p̄K

+
�g−1

g+1
�

p̄�
p̄K

�g−1
g+1

�
+1

Ã
Ã

Ã

Ç

É
. (24)

Replacing rK* from (21) with (24) gives, after some manipulation,

QK=
�p̄�+bK

aK

n1/2

, (25)

where

aK=
2

(g+1)rK

and bK= p̄K
�g−1

g+1
�

, (26)

and thus,

fK= (p�−pK)
� aK

p̄�+bK

n1/2

. (27)

3.1.2. Expansion wa6e relations. To construct the function across a non-linear wave, when
the wave is an expansion wave, the isentropic relationship across it and the constancy of the
Riemann invariants are used. The isentropic relationship is

rK* =rK
�p̄�

p̄K

�1/g

, (28)

and the Riemann invariants across the left and right waves, respectively, are

uL+
2aL

g−1
=u�+

2aL*
g−1

, (29)

and

uR−
2aL

g−1
=u�−

2aR*
g−1

. (30)

Equations (29) and (30) are rewritten, and fL and fR are defined by

u�=uL= fL, u�=uR+ fR, (31)

where the functions fL and fR are
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fL=
2

g−1
(aL* −aL), fR=

2
g−1

(aR* −aR). (32)

aK* can be replaced by substituting the isentropic relationship into the definition for sound
speed, giving

fK=
2aK

g−1
��p̄�

p̄K

�(g−1)/2g

−1
�

. (33)

3.1.2.1. Completing the solution. Now that Equation (10) has been completely defined, it may
be solved using a Newton–Raphson iteration

p (i+1)=p (i)−
f(p (i))
f %(p (i))

. (34)

It is assumed the solution has converged when the condition

�p (i+1)−p (i)�
1
2(p

(i+1)+p (i))
Be (35)

has been satisfied, typically e:10−6. The initial start up value for the iteration p (i=1) is found
using one of the approximate Riemann solvers of Section 4. The star state particle velocity is
computed by taking a mean value of the appropriate functions from Equations (19) and (31)
to give

u�=
1
2

(uL+uR)+
1
2

(fR(p̄�)− fL(p̄�)). (36)

The densities rK* are given by (24) and (28) behind a shock wave and rarefaction wave,
respectively. The solution inside a left rarefaction wave along the ray x/t=u−a is given by

u=
2

g+1
�

aL+
1
2

uL(g−1)+
x
t
�

, (37)

p= p̄L
� a

aL

�2g/(g−1)

−pc, (38)

r=rL
� a

aL

�2/(g−1)

, (39)

and along the ray x/t=u+a inside a right rarefaction wave, the solution is

u=
2

g+1
�

−aR+
1
2

uR(g−1)+
x
t
�

, (40)

p= p̄R
� a

aR

�2g/(g−1)

−pc, (41)

r= r̄R
� a

aR

�2/(g−1)

. (42)

All that remains is to calculate the wave speeds. The contact wave obviously travels at speed
u�, apart from this expressions are required for the shock speeds and the speeds of the head
and tail of a rarefaction wave. The left and right travelling shocks speeds are

SL=uL−
QL

rL

and SR=uR+
QR

rR

, (43)
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respectively, where QK is given by Equation (25). For a rarefaction wave, the speeds of the
head of the wave are

dx
dt

=uL−aL,
dx
dt

=uR+aR, (44)

for a left and right travelling wave, respectively, and the tail of the waves travel with speed

dx
dt

=u�−aL*,
dx
dt

=u�+aR* . (45)

3.2. An exact Riemann sol6er using the Tait equation of state

The exact solution to the Riemann problem using the Tait equation of state is obtained by
solving a single non-linear algebraic equation for the density in the star region. The remaining
star state variables then follow directly along with the two wave speeds. The function relating
the left and right data states to r* can be written as

g(r�)
gL(UL, r�)+gR(UR, r�)+Du=0, (46)

where Du=uR−uL. As in the case for the Tammann equation of state, the left and right
functions, gL and gR, respectively, depend on whether the non-linear wave is a shock wave or
a rarefaction wave.

3.2.1. Shock wa6e relations. If the non-linear wave is a shock wave, the Rankine–Hugoniot
conditions that hold across it are required; these can be written as

rKwK=r�w�, (47)

rKwK
2 +krK

n =r�w�
2 +kr�

n , (48)

where again, w is the particle velocity in a frame of reference moving with the shock of speed
SK,

wK=uK−SK, w�=u�−SK. (49)

Now

QL=rLwL=rL*w�, (50)

and

QR= −rRwR= −rR* w�. (51)

Substituting these into (48) gives

QL=
k(r�

n −rL
n )

wL−w�



k(r�
n −rL

n )
uL−u�

, (52)

QR=
k(r�

n −rR
n )

wR−w�



k(r�
n −rR

n )
uR−u�

. (53)

These are rearranged to define gL and gR

u�=uL−gL, u�=uR+gR, (54)

where the left and right functions, gL and gR are given by
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gL=
k(r�

n −rL
n )

QL

and gR=
k(r�

n −rR
n )

QR

. (55)

Eliminating w from Equations (50)–(53) gives

QK=
�k(r�

n −rK
n )rKr�

(r�−rK)
n1/2

, (56)

and the result below is obtained

gK=
�k(r�

n −rK
n )(r�−rK)

rKr�

n1/2

. (57)

3.2.2. Expansion wa6e relations. The Riemann invariants across a left and right expansion
wave are given by

u�+
2a�

(n−1)
=uL+

2aL

(n−1)
, (58)

and

u�−
2a�

(n−1)
=uR−

2aR

(n−1)
, (59)

respectively. A rearrangement of these leads to the definition for gK

u�=uL−gL, u�=uR+gR, (60)

where the functions gL and gR are

gL=
2

n−1
(a�−aL), gR=

2
n−1

(a�−aR). (61)

The sound speed behind the rarefaction wave, a�, can then be found by substituting the Tait
equation into the definition of sound speed to give

gK=
2aK

(n−1)
��r�

rK

�(n−1)/2

−1
n

. (62)

3.2.2.1. Completing the solution. Equation (46) has now been fully defined and this is solved
using a Newton–Raphson iteration,

r (i+1)=r (i)−
g(r (i))
g %(r (i))

, (63)

where it is assumed the solution has converged when the condition

�r (i+1)−r (i)�
1
2

(r (i+1)+r (i))
Be (64)

has been satisfied, typically e:10−6. For a start up value r (i=1), one of the approximate
Riemann solvers of Section 4 is used. The star state velocity then follows by taking an average
of the two equations for u� in (54) and (60) as appropriate,

u�=
1
2

(uL+uR)+
1
2

(gR(r�)−gL(r�)). (65)

The solution inside a left rarefaction wave along the ray x/t=u−a is given by
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u=
2

n+1
�

aL+
1
2

uL(n−1)+
x
t
�

, (66)

r=
�a2

nk
�1/(n−1)

, (67)

and along the ray x/t=u+a inside a right rarefaction wave, the solution is

u=
2

n+1
�

−aR+
1
2

uR(n−1)+
x
t
�

, (68)

r=
�a2

nk
�1/(n−1)

. (69)

The wave speeds are calculated as follows: for a left and right travelling shock wave,
respectively, you have

SL=uL−
QL

rL

and SR=uR+
QR

rR

, (70)

where QK are given by Equation (56). For a rarefaction wave, the speeds of the head of the
wave are

dx
dt

=uL−aL,
dx
dt

=uR+aR, (71)

and the speeds of the tail of the rarefaction wave are

dx
dt

=u*−aL*,
dx
dt

=u*+aR* . (72)

The shear wave travels with speed u*.

4. APPROXIMATE RIEMANN SOLVERS

The use of a Riemann problem-based numerical scheme to compute the solution to a single
initial boundary value problem can require the solution to the Riemann problem many
hundreds of thousands of times. It is therefore necessary to provide the solution with a
minimum of calculations, and hence CPU time, without unacceptable loss of accuracy. For
this reason this paper presents a number of approximate Riemann solvers that lead directly to
the solution of the Riemann problem in a liquid. As in the case for the exact Riemann solvers,
some methods will be used that were developed in the study of gas dynamics.

4.1. A linearised Riemann sol6er

This Riemann solver, often known as the primitive variable Riemann solver (PVRS), has
been shown to be very accurate for flows in which the shocks are of no more than moderate
strength [15]. In the same paper, it is shown that when this Riemann solver is used in an
adaptive fashion, with an exact Riemann solver, severe flow problems can be solved quickly
with almost indistinguishable accuracy from those where the exact Riemann solver is used
exclusively. In short, this Riemann solver exactly solves a linearised version of the primitive
variable Euler equations.
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4.1.1. The PVRS using the Tammann equation of state. The Euler equations (5) written in
primitive variable form, linearised about some average state W( = (r̄, ū, 6̄, p̄)T are

Ã
Ã

Ã

Á

Ä

r

u
6

p

Ã
Ã

Ã

Â

Åt

+Ã
Ã

Ã

Æ

È

ū
0
0
0

r̄

ū
0

r̄ā2

0
0
ū
0

0
1/r̄
0
ū

Ã
Ã

Ã

Ç

É

Ã
Ã

Ã

Á

Ä

r

u
6

p

Ã
Ã

Ã

Â

Åx

=0. (73)

The Riemann problem for this linear system of equations can be solved exactly using standard
techniques for linear hyperbolic systems with constant coefficients. The eigenvalues of the
matrix in (73)

l1= ū− ā, l2,3= ū, l4= ū+ ā, (74)

are associated with the right eigenvectors

R( 1=Ã
Ã

Ã

Á

Ä

r̄

− ā
0

r̄ā2

Ã
Ã

Ã

Â

Å

, R( 2=Ã
Ã

Ã

Á

Ä

r̄

0
0
0

Ã
Ã

Ã

Â

Å

, R( 3=Ã
Ã

Ã

Á

Ä

0
0
r̄

0

Ã
Ã

Ã

Â

Å

, R( 4=Ã
Ã

Ã

Á

Ä

r̄

ā
0

r̄ā2

Ã
Ã

Ã

Â

Å

. (75)

The jumps in r, u, 6, p across the wave structure can be written as

DW=WR−WL= %
4

i=1

hiR( i. (76)

After solving for hi, the solution to this Riemann problem can be found to be

p�=
1
2

(pL+pR)−
1
2

(uR−uL)r̄ā, (77)

u�=
1
2

(uL+uR)−
1
2

(pR−pL)
r̄ā

(78)

rL* =rL+ (uL−u�)
r̄

ā
, (79)

rR* =rR+ (u�−uR)
r̄

ā
. (80)

The tangential velocity component 6 changes discontinuously across the shear wave,

6=
!6L

6R

if
if

x/tBu*
x/t\u*

. (81)

Note that even though the solution for the tangential velocity component is trivial, some
Riemann solvers do actually get this part of the solution wrong. As to the choice for W( ,
experience in both gas dynamics and for compressible liquids has shown that the size of the
errors introduced by using different estimates for the average states (r̄, ā) depend on the initial
conditions and specifically, the errors grow as the initial pressure ratio increases. Where this
pressure ratio is B10, different choices for the average states do not significantly affect the
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accuracy of the Riemann solver. However, this Riemann solver is particularly suited to
adaptive schemes, in which case it is used where the initial pressure ratio is B2. Therefore, it
is believed that the choice of the average states is not critical. Other more sophisticated choices
have been derived, e.g. to recognise isolated discontinuities, but their complexity outweighs the
benefits and therefore, their use is not recommended, it is suggested that it is sufficient to
choose

r̄=
1
2

(rL+rR), ā=
1
2

(aL+aR). (82)

4.1.2. The PVRS using the Tait equation of state. The isentropic Euler equations (8) written
in primitive variable form, linearised about some state W( = (r̄, ū, 6̄)T can be written as

Ã
Á

Ä

r

u
6

Ã
Â

Åt

+Ã
Æ

È

ū
ā2/r̄

0

r̄

ū
0

0
0
ū
Ã
Ç

É
Ã
Á

Ä

r

u
6

Ã
Â

Åx

=0. (83)

Here the matrix in (83) has the eigenvalues

l1= ū− ā, l2= ū, l3= ū+ ā, (84)

with associated eigenvectors

R( 1=Ã
Á

Ä

r̄

− ā
0
Ã
Â

Å
, R( 2=Ã

Á

Ä

0
0
r̄

Ã
Â

Å
, R( 3=Ã

Á

Ä

r̄

ā
0
Ã
Â

Å
. (85)

The exact solution to the Riemann problem governed by this set of linear equations can be
found by writing the jumps in r, u and 6 across each wave as the sum

DW=WR−WL= %
3

i=1

hiR( i, (86)

and solving, first for hi, and then r� and u�, to obtain

r�=
1
2

(rL+rR)−
1
2

(uR−uL)
r̄

ā
, (87)

u�=
1
2

(uL+uR)−
1
2

(rR−rL)
ā
r̄

, (88)

where r̄ and ā are again calculated from Equation (82), and the tangential velocity component
is given by Equation (81).

4.2. A two-rarefaction Riemann sol6er

If the assumption that the solution of the Riemann problem contains two rarefaction waves
is made, the solution can be directly computed. For details on the two-rarefaction Riemann
solver (TRRS) for gas dynamics see Reference [16].
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4.2.1. The TRRS using the Tammann equation of state. If the two equations for u* given by
(31) are equated, you get the closed form approximation for p*,

p*=Ã
Ã

Ã

Æ

È

aL+aR−
1
2

(g−1)Du

aL

p̄L
z +

aR

p̄R
z

Ã
Ã

Ã

Ç

É

1/z

−pc, (89)

where z= (g−1)/2g. The particle velocity then follows as

u*=

p̄*
p̄L

uL

aL

+
uR

aR

+2
�p̄*

p̄L

−1
�
/(g−1)

p̄*
p̄L

1
aL

+
1

aR

. (90)

The density star states rL* and rR* then simply follow from the isentropic relationships (28) and
the tangential velocity is given by Equation (81).

4.2.2. The TRRS using the Tait equation of state. This Riemann solver provides a very simple
solution when used with the Tait equation of state. The equations for the left and right
Riemann invariants (58) and (59) can be solved for u* and a*

u�=
1
2

(uL+uR)−
1

n−1
(aR−aL), (91)

a�=
1
2

(aL+aR)−
1
4

(n−1)(uR−uL). (92)

Use of the Tait equation of state and the definition for sound speed gives

r�=
�a�

2

nk
�1/(n−1)

. (93)

The solution is completed by computing the tangential velocity from (81).

4.3. A two-shock Riemann sol6er

This two-shock Riemann solver (TSRS), originally proposed for gas dynamics [16], makes
the assumption that the solution to the Riemann problem contains two shock waves.
Unfortunately, the solution does not immediately come out directly as in the case for the
TRRS. It is shown below how this is overcome, to produce a very accurate approximate
Riemann solver.

4.3.1. The TSRS using the Tammann equation of state. If the two equations for the particle
velocity u* behind a shock wave are equated, although a solution for p* cannot be found
directly, it can written

p�=
pLf( L(p (0))+pRf( R(p (0))−Du

f( L(p (0))+ f( R(p (0))
, (94)

where

f( K=
� aK

p (0)+pc+bK

n1/2

, (95)

and p (0) is an initial estimate for p�, the choice
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p (0)=max(0, pPVRS), (96)

where pPVRS is given by (77), provides accurate solutions. In a similar manner, the star state
velocity may be calculated from

u�=
1
2

[uL+uR+ (p�−pR) f( R(p (0))− (p�−pL) f( L(p (0))]. (97)

The density states rL* and rR* can be calculated from the density–pressure relationships (24)
and the tangential velocity is given by Equation (81).

4.3.2. The TSRS using the Tait equation of state. A very similar method exists for the Tait
equation of state where

r�=
rLḡL(r (0))+rRḡR(r (0))−Du

ḡL(r (0))+ ḡR(r (0))
, (98)

where

ḡK=
� k(r�

n −rK
n )

r�rK(r�−rK)
n1/2

, (99)

and r (0) is an initial estimate for r� and

r (0)=max(0, rPVRS) (100)

is used, where rPVRS is given by Equation (87). The solution is completed by calculating

u�=
1
2

[uL+uR+ (r�−rR)ḡR(r (0))− (r�−rL)ḡL(r (0))], (101)

and the tangential velocity is given by Equation (81). Care must be taken with this Riemann
solver to avoid division by zero in the trivial case UL=UR. As this Riemann solver first uses
the PVRS to calculate p�, it is easy to detect the case in which it is unnecessary to use this
Riemann solver.

4.4. An HLLC Riemann sol6er

The approximate Riemann solver of Harten, Lax and Van Leer (HLL) has proved very
popular within the computational fluid dynamics (CFD) community, and many extensions to
it have been made. In the original method, the assumption is made that the solution to the
Riemann problem consists of only two waves. One of the extensions to this method is due to
Toro et al. [17], where the existence of a contact wave or shear wave within the solution was
restored. The resulting Riemann solver is called the HLLC Riemann solver.

The HLLC Riemann solution U(x, t) is given by

U(x, t)=Í
Ã

Ã

Á

Ä

UL

UL*
UR*
UL

if
if
if
if

x/t5SL

SL5x/t5S*
S*5x/t5SR

x/t]SR

(102)

where SL, S*, SR are estimates for the three wave speeds, see Figure 3. The solutions for the
corresponding fluxes FL* and FR* are obtained by rewriting the Euler equations in integral form
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Figure 3. The integration region for the HLLC Riemann solver.7
(U dx−F dt)=0, (103)

and carrying out the integral over the control volume ABCD shown in Figure 3. The result is

FL*=FL+SL(UL*−UL), (104)

FR*=FR+SR(UR*−UR). (105)

These two equations can be obtained more directly by applying the Rankine–Hugoniot
conditions across each non-linear wave. What remains to be done is to determine UL* and UR*
to be substituted into Equations (104) and (105) to obtain FL* and FR*.

4.4.1. The HLLC Riemann sol6er using the Tammann equation of state. If the approximation
u*=S* is made (104) and (105) can be solved for UK* to give

UK* =rK
�SK−uK

SK−S*
�ÃÃ
Ã

Ã

Ã

Æ

È

1
S*
6K

EK

rK

+ (S*−uK)
�

S*+
pK

rK(SK−uK)
�Ã
Ã

Ã

Ã

Ã

Ç

É

. (106)

The star state fluxes can then be found by substituting these back into (104) and (105). The
HLLC flux may now be computed, which can be written as

FHLLC=Í
Ã

Ã

Á

Ä

FL

FL*=FL+SL(UL*−UL)
FR*=FR+SR(UR*−UR)
FL

if
if
if
if

x/t5SL

SL5x/t5S*
S*5x/t5SR

x/t]SR.

(107)

There are a number of ways in which the wave speeds SL, S* and SR may be calculated. An
obvious and straightforward choice would be

SL=uL−aL, S*=u*, SR=uR−aR. (108)
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However the preferred method is based on making an initial guess for p*, in which case
discrimination can be made between shocks and rarefactions. If the exact expressions for the
wave speeds from Section 2 is taken, the three wave speeds can be written as

SL=uL−qL
(1)aL, S*=u*, SR=uR+qR

(1)aR, (109)

where

qK
(1)=Í

Ã

Ã

Á

Ä

1�
1+

g+1
2g

� p̄*
p̄K

−1
�n1/2

if

if

p*5pK

p*\pK

. (110)

The choice for p* can be taken from any of the above approximate Riemann solvers.

4.4.2. The HLLC Riemann sol6er using the Tait equation of state. Apart from the tangential
velocity component, Equations (104) and (105) can then be solved for UL*=UR* to give the
(HLL) solution

UHLL=
SRUR−SLUL+FL−FR

SR−SL

, (111)

or the fluxes can be obtained directly from

FHLL=
SRFL−SLFR+SLSR(UR−UL)

SR−SL

. (112)

Finally, the tangential momentum flux can be found to be

(ru6)HLL=Í
Ã

Ã

Á

Ä

rLuL6L
(ru)HLL6L

(ru)HLL6R

rRuR6R

if
if
if
if

x/t5SL

SL5x/t5S*
S*5x/t5SR

x/t]SR

, (113)

where (ru)HLL is taken from (111).
The exact expressions for the wave speeds from Section 2 enable the three wave speeds to

be defined

SL=uL−qL
(2)aL, S*=u*, SR=uR+qR

(2)aR, (114)

where

qK
(2)=Í

Ã

Ã

Á

Ä

1�
1+

(r*/rK)n−1
n(1−rK/r*)

n1/2

if

if

p*5pK

p*\pK

. (115)

Again, one of the previous Riemann solvers can be used as the preliminary guess for r*.
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5. RESULTS

Here three test problems are devised to assess the performance of these proposed Riemann
solvers. Since these Riemann solvers were devised for use as part of a Godunov-type numerical
scheme, it is the fluxes in the star region that are important to us (aside from in the sonic case).
The approximate Riemann solvers will be used to calculate the two star state fluxes FL* and FR*
and then will be compared with the fluxes obtained within the exact solution.

5.1. Test 1

For the Riemann solvers employing the Tammann equation of state the initial conditions in
terms of the primitive variables W= (r, u, 6, p) were specified. The first test problem has the
following initial left and right data states

WL=Ã
Ã

Ã

Á

Ä

1100.0
500.0

0.0
5000.0

Ã
Ã

Ã

Â

Å

and WR=Ã
Ã

Ã

Á

Ä

1000.0
0.0
0.0
0.1

Ã
Ã

Ã

Â

Å

, (116)

where the units are kg m−3, m s− l and MPa for density, velocity and pressure, respectively.
The constant values for g and pc are taken to be g=7.15 and pc=300.0 MPa. The exact
solution to this test problem consists of a shock of moderate strength (Ms=2.65) moving to
the right, and a leftward travelling rarefaction wave. To compare the accuracy of the
approximate Riemann solvers, the difference between the exact fluxes and the approxi-
mate fluxes for this Riemann problem are given in Table I. The differences are calculated
using

FARS
diff =

FARS−Fexact

Fexact

, (117)

where Fexact and FARS are the exact and approximate fluxes, respectively.

Table I. Riemann solver results using the Tammann equation of state

FL* FR*

(ru2+p)L* (u(E+p))L* (ru)R* (ru2+p)R* (u(E+p))R*(ru)L*

3.865×109 3.582×1012 1.035×106 4.019×109 3.645×1012Fexact 8.473×105

2.044×10−11.145×10−19.245×10−21.980×10−11.019×10−14.606×10−2FPVRS
diff

7.295×10−3 −9.294×10−3 −1.990×10−2 5.126×10−3 −1.034×10−2FTSRS
diff −1.761×10−2

FTRRS
diff 3.904×10−2 −3.420×10−2 9.768×10−4 −3.881×10−31.553×10−1 1.547×10−2

−3.497×10−2−1.145×10−2FHLLC
diff −3.931×10−2−2.050×10−2−2.763×10−2−3.838×10−2

The first line of results gives the actual flux values obtained using the exact Riemann solver and the following lines
give the difference between these values and the values obtained using the approximate Riemann solvers, FARS

diff , see
Equation (117).
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Table II. Riemann solver results using the Tait equation of state

F*

(ru)* (ru2+p)*

2.026×105 3.813×103Fexact

1.392×10−4 1.170×10−2FPVRS
diff

5.266×10−4FTSRS
diff −6.411×10−4

−3.367×10−3 3.327×10−3FTRRS
diff

9.904×10−4 1.160×10−3FHLLC
diff

The first line of results gives the actual flux values obtained using the exact Riemann
solver and the following lines give the difference between these values and the values
obtained using the approximate Riemann solvers, FARS

diff , see Equation (117).

Although these results give an insight into the accuracy, one may expect from these
Riemann solvers that it is not possible to put them into a strict-order based on their accuracy.
However, the following observations may be made: The PVRS Riemann solver is consistently
the least accurate of the four as expected; it is however, the cheapest Riemann solver in terms
of CPU time, as it makes fewer calculations. At the other end of the scale, the TSRS Riemann
solver appears to be the most accurate Riemann solver for this test problem. The HLLC and
TRRS Riemann solvers provide slightly less accurate results than the TSRS, but both are
significantly more accurate than the PVRS.

5.2. Test 2

For the Tait equation of state, the initial left and right data states in terms of the primitive
variable W= (r, u, 6) are described,

WL=Ã
Á

Ä

1100.0
200.0

0.0
Ã
Â

Å
and WR=Ã

Á

Ä

1000.0
0.0
0.0

Ã
Â

Å
. (118)

The constant values r0=997.04 kg m−3, n=7.15 and B=300 Mpa are assumed. The exact
solution to this test problem consists of a weak shock (Ms=1.25) moving to the right and a
rarefaction wave moving to the left. The results of solving this Riemann problem with the
Riemann solvers employing the Tait equation of state are shown in Table II, again the
performance of the approximate Riemann solvers are compared by looking at the difference
between the approximate fluxes and the exact flux computed using Equation (117). One can
see from these results that again, the TSRS appears to be the most accurate of the approximate
Riemann solvers. The PVRS Riemann solver does better in this test as the shock wave is
weaker. It must be noted that none of these Riemann solvers performs badly.

5.3. Implementation of Riemann sol6ers into Goduno6-type methods

Here an example of how the present Tammann equation of state Riemann solvers can
perform in a numerical scheme is given. For simplicity of comparison, the first-order accurate
Godunov scheme [18] is used. In this method, the solution vector, U, is taken to be piecewise
constant throughout the domain and the solution value in each cell is representative of an
integral average. The solution is advanced by solving the set of Riemann problems between
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neighbouring constant states (Ui
n, Ui+1

n ). The local solution taken along the ray x/t=0,
denoted by Ui+1/2* (0), is used to calculate the intercell fluxes and it is updated to the next time
level using the conservative formula

Ui
n+1=Ui

n−
Dt
Dx

[F(Ui+1/2* (0))−F(Ui−1/2* (0))]. (119)

The time step is calculated based on the characteristic speeds in the solution such that the CFL
condition C=Dt/Dx SmaxB1 is satisfied, where Smax is the maximum characteristic speed and
C=0.9 is taken. Consider a shock tube of unit length with a diaphragm at x=0.5 separating
two liquid states given by Equation (116). At t=0.0, the diaphragm is instantaneously
removed, and the resulting flow consists of a shock wave, a contact wave and a rarefaction
wave.

Figure 4 shows the results of applying the Godunov method to this problem employing the
exact Riemann solver throughout the domain. The number of computational cells, N, is taken
to be 100 such that the cell size Dx=1/100. The results obtained using the approximate
Riemann solvers in place of the exact Riemann solver are so similar to the results of Figure 4
that it serves no purpose to show them all here, therefore just a plot the results using the
HLLC Riemann solver as an example, will be given, see Figure 5. Of course in practice,
higher-order accuracy is needed. The weighted average flux (WAF) method of Toro [19] is a
second-order accurate extension of Godunov’s method. In this method, the intercell fluxes are

Figure 4. Dotted line—exact solution, symbols—Godunov’s method using the exact Riemann solver.
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Figure 5. Dotted line—exact solution, symbols—Godunov’s method using the HLLC Riemann solver.

calculated by approximating an integral average of the fluxes within the solution of the
Riemann problem. Figure 6 shows the results of applying the WAF method, also with
N=100, to this test problem utilising the PVRS Riemann solver. Both these first- and
second-order methods converge to the correct solution as the mesh is refined, although the
first-order method’s convergence rate is considerably slower.

If the numerical solution obtained by using Godunov’s method is denoted with an exact,
PVRS, TSRS, TRRS, HLLC Riemann solver as Uexact, UPVRS, UTSRS, UTRRS and UHLLC,
respectively, a comparison between the approximate Riemann solver solutions and the exact
Riemann solver solution can be made by comparing the total energy at each grid point. If the
calculations below are made,

err=
1
N

%
N

i=1

�Ei
exact−Ei

ARS�
Ei

exact , (120)

where ARS is PVRS, TSRS, TRRS or HLLC, and take the number of grid points to be
N=100, the results displayed in Table III are obtained. Here it can be seen that, consistent
with the results of Test 1, the Riemann solver TSRS is the most accurate, followed fairly
closely by the TRRS and HLLC Riemann solvers. The PVRS Riemann solver is the least
accurate of the four Riemann solvers. However, this is not always the case. If the strength of
the shock in this test problem is reduced by reducing the pressure in the left state by a factor
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Figure 6. Dotted line—exact solution, symbols—the WAF method using the primitive variable Riemann solver.

of 100 to pL=50 Mpa, a test problem is obtained in which the shock Mach number Ms=1.44.
If the calculations using (120) are made, the results are quite different, see Table IV. In this
case, the HLLC Riemann solver is the most accurate followed by the TRRS and the TSRS.
The PVRS Riemann solver is again the least accurate. Weak shocks are not the only case in
which the HLLC Riemann solver performs the best.

Table III. A comparison between the total energy obtained using the approx-
imate Riemann solvers with the exact Riemann solver

err×10−6

PVRS 225.8
TSRS 11.41

38.22TRRS
80.53HLLC
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Table IV. Results of making the calculations (120) applied to the weakened
shock version of Test 1

err×10−6

116.3PVRS
21.13TSRS
16.66TRRS

HLLC 5.86

5.4. A sonic test problem

For this test problem, the initial values for W= (r, u, 6, p) are taken to be

WL=Ã
Ã

Ã

Á

Ä

1000.0
2000.0

0.0
500.0

Ã
Ã

Ã

Â

Å

and WR=Ã
Ã

Ã

Á

Ä

1000.0
2000.0

0.0
1.0

Ã
Ã

Ã

Â

Å

. (121)

Although this test problem is artificial, as are many other classical test problems of this nature,
it is useful for highlighting an area in which the performance of the Riemann solvers differ
greatly. The exact solution to this test problem consists of a right-going shock wave with
Ms=2.6, and a sonic rarefaction wave. Figure 7 shows the results of applying the Godunov
method with exact, HLLC and TSRS Riemann solvers, respectively. Note that plotting the
results for the TRRS and PVRS Riemann solvers has been omitted as these perform in a very
similar manner to those of the TSRS Riemann solver. The results show that the HLLC
Riemann solver is the only one that is able to provide a smooth solution through the sonic
rarefaction wave; in fact even the exact Riemann solver solution is not smooth around the
sonic point, although the scheme is entropy satisfying [20].

Figure 7. Solid line—exact solution, symbols—Godunov’s method using the following Riemann solvers: crosses,
HLLC; squares, TSRS; diamonds, exact. The initial discontinuity lies at x0=0.5.
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6. CONCLUSIONS

It has been shown that a number of Riemann solvers, originally formulated for the solution of
gas dynamical problems, can be easily adapted for hydrodynamic problems. Full descriptions
of two exact Riemann solvers has been given for liquids corresponding to two choices of
equation of state, namely the Tammann and Tait equations of state. These exact Riemann
solvers involve finding the solution to a single non-linear algebraic equation for one of the star
state variables, and both Riemann solvers converge quickly to the correct solution. These
Riemann solvers have all been designed for use as part of a numerical scheme in mind. It is
clear that for complex flows in multidimensions, the use of an exact Riemann solver would be
too time consuming and that the use of approximate Riemann solvers will become necessary.
The proposed approximate Riemann solvers should prove satisfactory for this task. It was
found that the HLLC Riemann solver is the most accurate Riemann solver for flows that do
not contain strong shock waves. This is especially true where the flow contains sonic
rarefaction waves. The PVRS, TSRS and TRRS Riemann solvers perform badly in this case.
For flows containing strong shocks, the TSRS Riemann solver is the most accurate. The PVRS
Riemann solver is the least accurate Riemann solver here, although its cheapness can prove
very useful in situations where only a limited amount of information is needed about the
solution to the Riemann problem. It is apparent that no one approximate Riemann solver
performs consistently better than any of the others under all flow conditions. It is therefore an
obvious progression to use the approximate Riemann solvers adaptively. For example, it has
been shown that the PVRS works particularly well when used adaptively with the exact
Riemann solver [15].

Currently, work on modelling complex flow problems that involve both gas and water media
is in progress. It is expected that the Tammann equation of state will prove to be very useful
for this application.
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